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Abstract

Manpower problems of an organization have long been of great con-

cern not only for prediction of the future personnel inventory at

different ranks but also for analysing the interaction between states

of ranks and indicating chances for promotion. This study is intended

to construct and investigate reasonable and tractable models for man-

power. That is, models that describe the dynamics of recruitment,

advancement, and separation of individuals in a rank-structured

system. It is tempting to devise approximate diffusion models for

such problems, in order to obtain simple analytical mathematical ex-

pressions for quantities of interest.
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1. Introduction

Manpower problems of an organization have long been of

great concern recently, not only for prediction of the

future personnel inventory at different ranks but also for

analysing the interaction between states of ranks and

indicating chances for promotion. Virtually every

organization must plan their resources for future demands

and uncertainties and manpower is most pertinent among these

resources.

Several approaches have been developed for analyzing

this kind of problem. Among these, Markovian, or

semi-Markovian schemes (1) (2) have been used as well as

mathematical expressions for steady state values.

In the real world, the numbers in each rank are

correlated rather than independent, and so does between

different positions in a rank, e.g. there might be a

relatively favored type of individual as well as unfavored

ones.

This study is intended to construct and investigate

resonable and tractable models for manpower. That is ,

models that describe the dynamics of recruitment,

advancement, and separation (retirement , failure to

re-enlist, or discharge) of individuals in a rank-structured

system.

It is tempting to device approximate diffusion models

for such problems, in order to obtain simple analytical

mathematical expressions for quantities of interest.

In this thesis four stochastic models which describe



the manpower stocks or inventories at each rank are

developed. The simplest and most basic model is based on

assumed state independence and is presented in section 2A.

In the second model, described in section 2B, these two

assumption are relaxed. More realistic models that allow

for preferencial weighting factors are presented in section

2C and 2D.

For each case, the long term prediction model is

developed evolution of the process {Q(t), t>0} f following

the procedure of analytically.

Finally we present the conclusion in chapter 3 along

with some recommendations for further work on this topic.

Appendices are presented for the algebraic derivations.



2. Models

A. Model I

In a closed system, recruitment is allowed only for the

lowest rank, and advancements are considered for the very

next higher rank, but separation can take place from all

ranks.

In this model, the organization has a sufficient amount

of manpower resources, and the capacity (ceiling) of each

rank is unlimited.

The model structure is depicted in Figure 1.

*(t)
/"\

u,lt)
/*\

u,tt)
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Fig 1.

a (t) is the recruitment rate for the first grade.

The personnel who are in the rank-1 #Q,(t) , can be

advanced to the next grade by the rate of u, (t) or separated

from the system by the rate of v, (t) and so on for the

succeeding grade.

The manpower stocks at time t which are in grade i,

Q i
(t) are advanced with probability u.(t), and separated with



probability v. (t) , over the interval (t.t-fdt) .

We will write down stochastic differential equations

of the same form as that given by Gaver and Lehoczky. (3)

Notation

dQ.(t)=Q.(t+dt)-Q.(t) is used.

A,

For grade 1 :

dQ, (t)=Qo
a(t) dt-v, (t)Q, (t) dt-u, (t)Q, (t) dt

+7Q
o
a(t) dW A (t) - }Q X

(t)v, (t)dW
v>
(t

)

-JQ,
(t)u, (t)dW^(t)

(1,1)

For grade i, i-2,3,...,k

dQ. (t)=u^(t)Q
; .1
(t)dt-{a. (t)+v. (t)}Q. (t) dt

+Ja.lH(t)Q.l

^(t)dW
|Ij

_((t)-/u. (t)Q. (t)dW
U;

(t)

-Jv. (t)Q. (t)dW^ (t)

(1/2)

In equations (1,1) and (1,2) the terms dW*(t) , dW^(t) ,

dH
u
(t), d» V{

(t}, and dWu.(t) are the derivatives of

independent standard Wiener precesses, and such as are

usually called Gaussian White Noise.

The increment of the population in the 1-st grade is

recruitments minus retirements and promotions in (t,

t+dt) . For small dt> the fluctuating ( diffusion )

component of recruitment is represented by /Q.a(t) dW^(t)

,

where the scale factor is the standard deviation of a

Poisson process with mean Q.a(t) and dw x (t) is S(0,dt)

the other noise terms due to promotion and retirement are



obtained from the same rationale.

To study the random noise component, we introduce the

standardized noise variables :

Xj (t)={Q. <t)-Q,q. (t)}//q,r i=1,2,...,k

wherejg. (t) is the mean valuer of Q
;

(t) j s +

The equations (1,1) and (1,2) substituted by (1,3) can

be arranged as a system of k. ordinary differential equations

for the mean value approximation, and a system of n

stochastic differential equations for the noise components :

For the mean value approximation,

dq, (t)/dt=a(t)-{v, (t)+u, (t)}g, (t)

dq. (t)/dt=u
;
.,(t)q..

1

(t)-{u
;
(t)+V

;
(t)}q. (t)

i=2 , 3 , . . . ,n

(1#»)

For the noise component ,

/, - *,(*)« i

dX, (t)=-{v, (t)+U, (t)}X, (t)dt+/a(t>dW A (t)

-/. «t)q, (t)dW v (t)-/u
(
(t)q, (t)dW

M(
(t)

dX; (t)=U..
t
{t)Xj.,(t)dt-{U; (t)+V. <t)}X.(t)dt

+/Ui.,(t)q. H (t) dWVt(t) -/u. (t)q. (t) dWu .
(t)

Vv
;

(t)q. <t)dW„. (t)

i-o.-i. (1/5)

We express (1,5) as a simple form ;



ax, (t)=-b, (t) X, (t)dt+v/a(t)+b, (t)q
(

(t)dw, (t)

dX
;

(t)=u
; _ i

(t)X._
t

(t)dt-b
i

. (t)X. (t)dt

Vu
i-»(

t )9..
l

(t)+b. (t)g. (t)dff. (t)

i=2,3,...

(1,6)

where b. (t)=u.(t)+v. (t) and dW . (t) is the standard Wiener

process associated with grade i, i=1 ,2 ,

.

.

.

(Derivation : Appendix A)



We then write noise variables in vector fashion as ;

X(t)={X, (t) , l%
(t) , ... ,X

n
(t)}'

W(t) = {W (t), H
x
(t) , ...fi n (t)}>

dXlt) =

-b,tt), ,

•
> °

,
u.-.lt), kit)

X(t)4t

/

AaltH bit) yt^ o

/luAt^lt^kit)^)^

<UttW*>+klW
/"•

«Jwct)

(1,7)



For the mean value of each grade we can solve equation

(1,4) grade by the grade or by the computer

i.e.

i.e.

g (t)= (exp{-$ (v, (x)+u, (x))dx}a(s) ds
« t

+g
i

(0) exp{-J(v, (x) + u
,
(x) ) } dx

q^ (t)= [exp{-J(v 1
(x) +u, (x) ) dx} q, (s) g

(

(s) ds

+ g^ (0)exp£-j(u
fc
(x) +v, (x))dx)

(1,8)

For the noise component we can find X, (t) from (1,5)

X, (t) = '|exp{-((v
l

(x)+u ,(x))dx}
• s

• yaJsi + Cv, (s) +u
l
(s)}q

i

(s)dW, (s)

+ X, (0)exp{-J(v v
(x)+u, (x))dx}

(1,9)

and

E£X, (t)}=X, (0)exp(-[(v, (x)+u, (x))dx)
e

7ar{X
(

(t)}=^exp{-2 5(v, (x)+u, (x) ) dx}

• {a(s) + (v, (s)+u, (s))g
i

(s)}ds

For the special case, where, a(t)=a, v.(t)=v, and u.(t)=u,

after a lcng period of time (t^«o) , these values are:

E{X, (t)}=0

Var{X, (t)}=a/(u + v)

10



From (1,8) we can observe the mean number of people in

1-st grade as t4co is a/(u,+v,). These results are

analogous to an H/M/co queueing model in which the mean

number of people in the system is a/(u, +v, ) and the

probability that there are n people is Poisson (a/ (u, + v,

)

) .

(Ref. (4) )

For subsequent grades we have to consider the

correlation between X- (t) , X. (t) , (i*j) . Since we know

that these noise terms are sums of Normal random variables

whose mean is zero, it follows that 2 {X : (t) } =0 and tne

variance is equal to the second moment. We describe the

moment functions as :

m, (t)=E{X2(t)}

a
(t)*ff{X*(t)}

m
|1
(t)=E{X, (t)X t (t)} etc.

and

{m. (t+dt)-m. (t)}/dt = dm. (t)/dt as dt =

i=1 ,2,.. . ,k

Substitute X
;

(t+dt) =X . (t) +dX. (t) into (1,5), square both

sides, and take the expectation, than we can get moment

functions.

In this procedure, E[ fi/a (t) dW^ (t) } 2 ] is a(t)dt,

Var[dW^(t) ]=E[ {dW^ (t) }2 ]=dt since

dW«.(t) — N(0, dt) .

11



For grade-1 and grade-2,

v/ >/ y
dm, (t)/dt=a(t)+v, (t)q, (t)+u, (t) g ,

(t)

-2£v, (t)+a, (t)}m,(t)

dm x (t)/dt=u l
(t)g,(t)t[u^(t)+v1

(t)}q
J<
(t)

-2{a
l
(t)+v

z
(t)}m

fc
(t)*2u

1
(t)B

11>
(t)

dm
(t
(t)/dt=u, (t)m, (t)-{a

x
(t)+T4 (t)+u, (t) *, (t) } o,

x
(t)

-U, (t)q^(t)

(1,10)

(Derivation : Appendix 3 )

The variance and covariance are the solutions of these

equations. These solutions can be determined numerically,

on computer, and steady state values can be derived

explicitly

.

12
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THE STEADY STATE MEAN IN EACH RANK

OF

A MULTI-RANK ORGANIZATION

When an organization maintains a certain policy for

recruitment/ promotion, and retirement indefinitely, it may

have a steady state property (when the rate of flowing into

a grade is less than that of flowing out) , thus an

analytical approximation technique can provide an answer

that is quite simple and useful.

For the purpose of investigating such a situation we

take a (t) , u. (t) , v. (t) to have constant values in equations

(1,4), and solve these under steady-state

conditions. This can be done by setting the derivatives

equal to zero, and solving.

q, (»)=a/b,

qt
(«o)=u, a/(b

( \)

• • •

<3

h
(«) =u, u

2
. . . u

rt
.a/ {b, b

x
. . . b n }

wnere b
;
=u

;

+v. , i=1,2,...,n

Special Case

If there is the sam e chance of promotion and retirement

for every grade, u and v, then

q (co) = (a/u) {u/b}\ n=1,2,...

and the total number of people in the system is

£ q. (®) = (a/b) {[l-(u/b)
n
]/(1-(u/b) ]}, where (u/b) < 1

14



It

Let g = T. q. (oo ) ,then g is the tipper level of total number

of people up to rank-n,and the maximum number of people in

this organization is

q = f. g. («) = (a/b) {1- (u/b)}-*, where (u/b) < 1

Sometimes, one is interested in the number of people who are

above a certain rank.

q -5 = (a/b) {(u/b)" /[1-(u/b) ]} , n=1,2,...

(1,11)

This geometrically decreasing function represents the

relative difficulty in occupying the higher ranks. Moreover,

the geometric growth rate (u/b) might be of interest in

comparing organizations.

15



B. Model II

. In this model we have improved a ceiling for the

population size of each grade, it is not allowed to exceed

that level, and promotion rate is proportional to the

vacancy of the very next higher grade, where the vacancy is

the difference between ceiling and present population.

Let u
j

(t) be the rate at which individuals become

candidates for promotion from grade i. Some of those

in a grade can be promoted, and the rest of them will "give

it up", i.e. be forced to leave. We have also a natural

loss from each grade, described by the rate v. (t) .

The model structure is depicted in Fig 2.

Q : ceiling of i-th grade

UiCt)

Fig-2

16



The probability of being recruited from the population

is a (t) {1-[Q. (t)/Q
(

]}, the probability of being promoted is

modeled by u (t) (1-[Q
t

(t) /Q ]} , and the probability that

present grade occupants give up this organization because

they failed to advance as candidate is u
,
(t) [Q x

(t) /Q } .

In order to express the change in a grade we shall

first study the change in the mean. The mean increment

to the grade is the recruitment or advancement into it,

minus those separated and becoming eligible for promotion in

(t, t+dt)

.

Concerning fluctuation ( diffusion ) , we have to

consider the terms due to recruitment, promotion, giving up

the organization, and natural loss separately since some of

these terms are correlated with ones in the next grade.

The noise term dW
u

< l ^denotes the fluctuation due to

losses from the organization, and dW
u

< 2 \t)denotes that due to

promotion to the next grade.

17



For the 1-st grade

dQ, (t)=Q a(t) {1-[Q, (t)/Q,]}dt-u, (t)Q, (t) {Q x
(t) /$} dt

-u,(t)Q, (t) (1-[Q 4
(t)/Q

2
]}dt-v, (t) Q, (t) dt

/Q.a(t) £1-[Q, (t)/Q,]} dW
<x
(t)

Vu, <t)Q, (t) {Q a
(t)/Q

2
}d¥

u
< i ) (t)

-/u, (t)Q, (t) £1-[Q, (tJ/QjjdW^) (t)

-/v. (t)Q, (t)dW
V| (t)

where Q. (t) <Q
;

, i=1,2, ...

(2,1)

For the 2-nd grade,

dQ
z
(t)=u,(t)Q, (t) {1-[Q t

(t)/Q,]}dt

-u a (t)Q, (t) £Q 3 (t)/Q
3
}dt

-u a (t)Q
a

(t) {1-[Q 3
(t)/Q

3
]}dt-v, (t)Q

a
(t)dt

+/i, (t)Q, (t) (1-[Q a
(t)/Qj} dH<2> (t)

Vu a
(t)Q

z
(t) {Q 3

(t)/Q
3
}d»<D (t)

9

~/u i (t)Q 1 (t) (1-[Q, (t)/Q,j} d^2>(t)

-/^ ("t)Q
2
(t)dW

Vi
(t)

where Q, (t) <CX , Q,(t) <Q
3

(2,2)
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We standardize noise variables and Q as k Q to ^??ly

th€ same technique which we had before.

(Appendix A )

We can get two deterministic mean value functions and

two stochastic differential equations ;

dq, (t)/dt=a(t)-{a(t)/k,+u
l
(t) +v, (t)}q, (t)

dq
a
(t)/dt=u,(t)q, (t>-{a t (t)+V, (t)} gi (t)

+ U, (t)q, (t)g
s
(t) Ai

(2,3)

and

dX
,
(t) =- {u

,
(t) + v, (t) +[ a (t) A , ]} X

,
(t) dt

+/a(t) {1-[q, (t)/k, ]}dW.(t)

-/q,(t)q
a
(t)u, (tJ/kxdWO)

-/u, (t)q, (t) {1-Eq^tJ /K J}dW
u
< 2 ) (t)

"A, (t)q, (t)dW v (t)

dX
2

(t) = [1-£q
4

(t) A» ]} a
,
(t) X

,
(t) dt

*{Uv(t)+Va (t)}X 4 (t)dt

+/u, (t)q, (t) {1-[q,(t) A, ]} dMu
C 2 ) (t)

-/u,(t)q
i
(t)q

3 (t)A 3
dW^l > (t)

-/u J.(t)q 1
(t) {i-[g

J
(t)A 3

]}dH
u
(2) (t)

-/.(t)q
a
(t)dW l4 (t)

(2,4)
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We express these in a vector fashion

I(t)=(X, (t) , X
2
(t) }

»<t) = (H*(t), W<U(t), Wu
< 2 >(t), W

u
CD(t)

#

w
4
2) (t) , W„(t) , w,

t

(t) }'

and

4XW-

a(t)-|«% U|rtj^rt)J

1*W
\>-T\- it)

{
VA Vt) + U x (t)|

Kct) at

.
7^*>yti o

N

-^^.-Wl'-Sfl, o,/^
dwitj

•*

(2,5)
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Since we are interested in the variance of the noise

factor for each grade, we make second moment functions from

(2,H) including covariance between X, (t) and X 2
(t)

( Appendix 3 )

dm, (t)/dt= a(t) + {u, (t)+v, (t)}q, (t)

-£2a(t)g, (t) /k, } -2 {u
,
(t)+v, (t)}m, (t)

dm
2
(t)/dt={u

1 (t)+Vl (t) +u, (t)[q, (t)/k 4 ]} {g a
(t)-2m

a
(t)

}

a, (t)g, (t) [l-Cig x (t)/k i ]}

+ 2u, (t) [1-[gjt)/k, ]}m
ix

(t)

dm ll(t)/dt=u 1
(t) (1-Cg»<t)/k 4 ]J (m, (t)-q, (t)

}

-[u, (t)+u x (t)+v, (t)+v
2 (t)

u. (t)[q
(

(t)/k
z ]}m lz(t)

(2,6)

We can solve (2,6) together with (2,3) as five

first-order differential equations.
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TH2 STEADY-STATE MEAN IN EACH RANK

OF

A MOLII HANK ORGANIZATION

For long term prediction, an analytic approximate

technique is very attractive. In this case the organization

maintains the same policy of recruitment and promotions .

Prom (2,3)

I C«)- Q,{~ }

Qt
( a, + v, ) + a J

V»)- fii[
———

]

0-.-, u,_, q
{
_,

I - 2 , 3 . . . .

We introduce

O:

W Here
J,

i * £ . 3

23



and let

~ -,-i

* l + ?A- , J. * 2, 3.

(2,7)

This formula describes the mean number in rank i as a

function of policy and behavioral parameters.

For the same ceiling of each grade and the same chances

of promotion and retirement, it is very simple to express

the general term of the number of people in a grade.

F.r ?.. J ,

j.
c-s ^ s"'~' £,+ (- s

! ")

*~
- s

and

i Ceo) = Q ;
J

Since §>i
J

-^or +Ke higher 3 ra d € ,

= K?"'

6 (
1

+ -)
where |/ ,

V V u '

i = 2. 3^ >

(2,8)
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This looks like a geometric progression. Thus when

3. « % the distribution of individuals over ranks is

geometric in the steady state.

In the following section we develop this model to

analyse the interaction between the two kinds of individuals

in a grade.

25



C. Model III (Initial preference Model )

We modify Model II for two kinds of populations, called

favored, and unfavored ( or normal ) . In this

organization the recruitment rate of the favored population

is proportional to the vacancy i.e. number of openings in

the grade to which they are candidates for advancement, and

for the unfavored group it is proportional to the vacancy,

but also to the number of the members of the favored group

who are employed therein. It is very interesting to

observe one of these examples in an organization which has

male and female components ; perhaps the female is favored

as a policy choice.

Let G(t), and the subscript g , denotes the favored

individuals, and H (t) and the subscript h denotes the

unfavored ones.

The model structure is depicted in figure 3.

Fig-3
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For favored individuals in the 1-st grade,

dG, (t)=a^(t)Q
d
£1-[G, (t)+H, (t) ]/Q,}dt

-Vj (t)G, (t)dt-u^(t)G, (t)dt

+/a^(t) {1-[G, (t)+H, (t) ]/Q
t

} dW^t)

"/v. (t)G, (t) dW (t) -|/u. <t)G, (t) dWu (t)

where G, (t) +H, (t) < Q,

(3,1)

For unfavored individuals in the 1-st grade,

dH, (t)=a
h
(t)Q {G, (t)/[G

t
(t) + H, (t) ]}

«{1-[G, (t)+H,(t) ]/Q,}dt

-{v
h(
(t)+u

h)
(t)}H, (t)dt

Vaw(t)Q {G, (t)/[G,(t)+H, (t) ]}

•{1-[G, (t)+H, (t) 3/QJdW (t)

-/vh( (t)H t
(t)dW V(Jt)

Vu h (t)H, (t)d»u (t)

(3,2)
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To study the random noise component, we introduce the

standardized noise variables.

For favored individuals,

X. (t) = {G. (t)-Q a (t)}//5 , i=1,2,...,n

For unfavored individuals.

I. (t; = {H. (t)-Q
o
h

;

(t)}//Q
o

, i=1,2,...,n

(3,3)

where g. (t) and h. (t) are the mean value of G. (t) and H. (r)

From equations (3,1) and (3,2) substituted by (3,3), we

can get a system cf two ordinary differential equations for

the mean value approximations and another system of two

stochastic differential equations for noise components;

28



dg, (t)/dt=a
;

(t) (1-[g
t

(t) +h
,
(t) ]/k, }

-{Vj (t)+a
J
(t)}g

i

(t)

dh
4
(t)/dt={1/[g

(

(t) + h, (t) ]-1/k,}a
h

(t) g
(

(t)

-£ v
h
(t)+u. (t)}h, (t)

where g <t) + h, (t) < k,

(3,4)

dx, (t)=-{a
$
(t)/k,} {X, (t)+Y, (t)}dt

-{v.{t)+u- (t)}X, (t)dt

Va^(t) £1-[g, (t)+h
(
(t) ]/k,} d»4 (t)

V\(t)g, (t)dw^(t) -yu* (t)g, (t)dW
y (t)

d*i (t) = {1/[g
v
(t)+h

(
(t) ]-1/k

l
}a

h
(t)X, (t)dt

-Ca h
(t)g, (t)/£g, (t)+h, (t)}2]£X, (t) +Y

,
(t)}dt

+/a
w
<t)g, (t) {1/[g,(t)+h, (t) ]-1/k,}d w

a||
( t

)

-/v
hi
(t)h, (t)dw^(t) Vu h|

(t)h, (t) dW
Uh

(t)

where g (t) +h, (t) < k

(3,5)

( Derivation : Appendix C )
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We then express the noise variables in vector fashion ;

Z(t)={X, (t) , I, (t) }«

«(t) = {W
(X

(t) / W
ft

(t) , W,j(t), H„(t), W„/t), Hy.(t) }•
* h Ti "i J, \

il(t) =
-i^ +^ +V4,

l

j

i i l.j <v«nt)
|<V*) -

a,^^+,*) -*,' U/*> -+ v*,^ ,

ftjlt)

- jO
h
u), u w tt)| -

\

?ct)dt

/*

+

r/^rn^

\

,Vu
a
,it)%it)

>

V

J Wit)

/J
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Since X, (t) and Y, (t) are approximately normal random

variables with zero mean, we can find their variances by

solving moment function differential equations.

Let

and

m
x (t)=E[Xf (t) ]

m
x
^(t)=E[X

t
(t) Y, (t) ]

m Y
(t)=E[Y

(

2(t) ]

£X2 (t+dt)-Xf (t) }/dt=dm„ (t)/dt as dt-^0

and similarily for m (t) and m Y (t).
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By squaring both sides of equation (3,5) and taking

expectation, we get a system of three ordinary differential

equations of moment function ;

da
Xi
(t)/dt=a^(t) £1-[g, (t)+h, (t) ]/k }

+ {v^(t)+u
3
.(t)}g

1

(t)

-2{v
J
(t)+u

Ji
(t)+[a^(t) A, ]}m

X|
(t)

-2{a^(t)/k, }mM(t)

dm
Y
(t)/dt=a

K
(t)g

(

(t) (1/Cg, (t) +h
,
(t) ]-1/k,}

+ {v
hi
(t)+u

h|
(t)}h, (t)

+ 2a h (t> [V[g, (t)+h,(t) ]-Vk,J^t)

-2{v
h
(t)+u

y,
(

(t)}m>
ri

(t)

-2a h (t)g, (t)/{g
t

(t) +h
,
(t) } « {^(t) +o

Y(
(t) }

dmu(t)/dt=a
h
(t) {1/[g, (t) +h, (t) J- 1A,}n Xl

(t)

-ah (t)[g, (t)/{ gi (t)+h, (t)}2]m
Xi
(t)

-{v^(t)+v
h(

(t) u^.(t)+a
>||
(t)+Ca

8>
{t)/k ]

+a
h
(t)g, (t)/[g, (t)+h, (t) ]*} rn^t)

-£a^(t)/k,}m^(t)

(3,6)
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In order to get the variance and covariance of the

noise component, we can solve a system of three ordinary

differential equations instead of two stochastic equations,

(3,5) , together with (3,4).

For higher grades, up to n-th grade, it is required to

set up a system of 2n ordinary differential equations for

mean value approximation and another system of 2n+ ( , )

ordinary differential equations derived from a system of 2n

stochastic differential equations for noise component.

Taking a six grade military rank-structured

organization as an example, we are required to solve 12

equations for mean value approximation and 78 equations for

noise component, which makes a system of 90 ordinary

simultaneous differential equations.

We will present a simple numerical example for the

first grade.
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THE STEADY STATE MEAN IN EACH RANK

OF

A MULTI RANK ORGANIZATION*

For the special case, when we have constant parameters

for the recruitment, retirement, and promotion, it is

attractive to develop an approximation technique for the

number of people in each grade.

To observe the steady state value, we set the

derivertives equal to zero in equation (3,4), and solve for

the ratic of the number of favored population and unfavored

ones, grade by grade.

For simplicity we adopt the following notation ;

W; =9; (<0)/h. (CO)

bi' {VV /{W
a=a

5
/a

K , u
; =^/\

(3,7)

By solving (3,4) substituted by (3,1),

w, ={a+/a2+ ^
,

D, a }/(2b, )

(3,8)

For the general grades,

u
f(-|

9i-i 0-(g. +n. )/k.}-(Vj , + UjJg. =0

U
h

hj., (g./(g. +h )} £1-(g. +h )/k. }-(v +u )h.=0
'; -t » i i ill fl| Hj i

(3,9)
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u
i
.

l

wM {1-(1/w
i

)}=b
?

w,.

(3,10)

and

V. =f. w. +l/{f. w. ,+ 1} 2 -1 where f. =u. ,/(2b. )

i=2,3,.. .

(3,11)

It is straight foward to get mean value approximation

in steady state, when it exist, to solve (3,4) and (3,9)

substituted by (3,8) and (3,11)

g, { *°) =a^/{u
3
+v^ + (a

5
/k

t ) (Ul/v,)}

g. (oo )= Uf g..
(

/{u
3
+v

}i

+(Uj g.., /k, ) ( 1 + 1/w. ) } , i=2,3,
'* l

(3,12)

and

h. (® )=g. (oo ) /w- , i=1,2,.. .

(3,13)

For the special case, when we have the same policy of

promotion and retirement for all rank ;

w. = fw.
(

+/(fwH+1) 2-1 from (3,10)

It is very interesting to observe that the ratio of

g (oo ) and h (eo
)

has a tendency to converge a certain

constant for the very high rank. We can track the value by

assuming w. =w
l-v , then,

uw (1-1/w) =bw

w=u/ (u-b)
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where u=u = u-/u^ b= (u, +v,
|
/u

K
+v

K ) and u*b

(3,14)

But , when we have the same policy for the two groups,

f=1/2 ,and

w =.5w +/(.5w +1) 2 -1

which diverges.
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D. Model IV (Modified Initial Preference Model)

This model is based on the same general concept that

was used to develop Model-Ill. The only difference between

Models III and 17 is in the preference factor.

Me use G
5

(t) /Q. instead of G
;

(t) / (G. (t) +H. (t) } as a

preference factor , which requires only simple algebra to

derive the final result , at least in the steady -state

situation. Accordingly, (3,2) is changed to the following :

dH, (t)=a
h
(t)Q £G, (t)/Q, } {1-[G

V
(t) +H

,
(t) ]/Q,}dt

-{v
h| (t)+uh

(t)}H, (t)dt

+/a
h
(t)Q

o
£G, (t)/Q,} £1-[G, (t)+H, (t) ]/Q, } dW« <t)

Vvh
(t)H, (t)dWv (t)-/uK (t)H, (t)dHU (t)

where G, (t) +H, (t) <Q

,

(^1)

He derive a system of two ordinary differential

equations for the mean value approximation and another

system of two stochastic differential equations for the

noise component form (4,1) together with (3,1).

dg, (t)/dt=a^(t) (1-[g, (t) +h, (t) ]/k,}

-{Vj (t)+a
9
(t)}g

l
(t)

dh, (t)/dt=-{v
h
(t)+u

hi
(t)}h, (t)+a h (t)g, (t)/k,

-{a
h
(t)/Jc2 } (g

(

(t)*h, (t)}g, (t)

where g^ (t) +h
(

(t) < k

(4,2)

and
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dx» (t)=-{a^(t)/kj (X,(t)+Y, (t)}dt

-{v^(t)+u
J(
(t)}X, (t)dt

Va^(t) {1-[g, (t)+h, (t) ]/k,} dw^(t)

-/v^(t)g, (t)dW^(t)

-/u^(t)g
v
(t)dWU}(t)

dY, (t) = {[a
h
(t)/k, ]-2g, (t)-h, (t)}X

t
(t) dt

-{u
h%
(t)+T

hi
(t)+g, (t)}Y, (t)dt

+/{a
h
(t)/k

v } {1-[g, <t)+h, (t) ]/fc, }g, (t) dw
aw

(t)

-Jv h
(t)h, (tJdW^t) -/^.(tjh, (t) dW

Uh
(t>

(4 f 3)
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We express it as a vector fashion ;

Let

Z(t)={X, (t) , Y
v
(t) }

•

then

Z(t) {W* , W* , Wy , W^ , Wj t w w ' J

«s tt)

JZttW
4 w tt)

k (x -*&<*) --t^]
^
-(u^t^w+^J,

3?C-tr)<*t

riM771^7

! ,

o
, /v^ -

\

JV^VV ,

Juh Wiit) jvJKttrt,no

a wet)

/-"
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By the same logic a system of three ordinary

differential equations for moments is derived from (4,3).

dm
X(
(t)/dt=a^(t) C1-[g, (t)+h, (t) 3/k, }

{v
}
(t)+ut (t)} g) (t)

-2{v
}(
(t)+u

Vi
(t)+[a^(t)/k, ]}m

x
(t)

-2{a
>
(t)/k, }m

>Y
(t)

dm^
x
(t)/dt=[[a

h
(t)/k

v ]-2g, (t)-h, (t)}m
x
(t)

-{a^(t)/k,} {m
Y
(t)+m^(t)}

-{v^(t)+v
h(
(t)+u^(t)+u

h(
(t)+g

(

(t)}ra
xi

,(t)

dm
Y
(t)/dt={1-[g

(

(t)+h, (t) ]/k,} {a
h

(t) /k, }g
(

(t)

£v
h)
(t)+u

hi
(t)}h, (t)

2{£a
h
(t)A, ]-2g, (t)-h, (t) } m^t)

-2{g, (t)+vh {t)+u h (t)}m Y (t)

(4,4)

We solve (4,4) together with (4,2) to get the mean

value approximation and variance and covariance of the noise

component.
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3. CONCLUSION

In this thesis , we have developed four Models to

analyze man-power stocks and flows in a rank - structured

hierarchy.

He applied the diffusion approximation technique to

investigate the fluctuation due to recruitment, retirement,

and promotion rather than Markovian or semi-Markovian

schemes.

From the very simplistic Model-I , which has an

unlimited ceiling and independent transition policy, we

developed Model-II whose recruitment and promotion policy

are dependent up en the present population of the very next

grade.

The mean value approximation and variance of the noise

component ( fluctuation ) is the essential factor for

planning purpose as well as prediction. It is very useful

to analyze the relationship between the fluctuations of two

tandem grades as the latter depends upon the promotion

policy ( rate )

.

Model-Ill and Model-IV were developed to represent a

more complicated organization than that of Model-II. In

this model two individual types ( favored and unfavored )

compete for the same positions. The relationship between

neighboring grades as well as unfavored and favored

individuals in the same grade were analyzed.

The approximation technique for the steady state case

can be applied to the real world easily because of its

simplicity.

Finally, the man-power problem has been concerned with
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partial change (modification) in an organization, rather

than with the whole structure. In order to analyze these

effects, with their fluctuations resulting from a

modification of a part of the policies, it is very

attractive to develop models using diffusion approximation

techniques. They are relatively simple and show promise

of representing realistic systems with resonable accuracy.

45



Appendix-A (Derivation )

Substitute (1/3) into (1,1) and rearrange it for dX, (t)
;

i

dX, (t)=-{v, (t)+u, (t)}x, (t)dt

V5. {a(t)dt-[v, (t)*U, (t) ]q,(t)dt-aq, (t) }

~/V, (t) {[X,(t)//Q, ]*q, (t)} dW
V( (t)

Vu, (t) {[X, (t)//Q
e j+q^ (t)jdW u (t)

VMtJdW^t)
(A-1)

Since X, (t) is normal random variable, dX, (t) is finite

, and ,/q term in (A-1) must be zero as Q --*co ( for a huge

population ) , otherwise it will blow up.

It follows that ;

dq, (t)/dt=a(t)-{v, (t)+u, (t)}q
v

(t)

(A-2)

and

dX (t)=-{v, (t)*u, (t)}X, (t)dt

+/<L(t)M x {t) -A, (t)q, (t)dW
V(

(t)

Vu, (t)q, (t)dWu (t)

(A-3)
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For the general grade we rearrange (1/2) substituted by

(1,3).

dX. {t)=U._
(

<t)X._(t)dt-{U; (t)+V. (t)}X; (t)dt

VQ, £u^(t)qH(t)dt-[U, (t)+v. (t) ]q. (t)-dq. (t) }

+A. t

(t) {[ X.Jt) //Q. ]
+ g

;

.,(t)} dw
Ui
jt

)

-A; (t) {[X
;

(t)//Q, ]+q. (t)}dW
U;

(t)

-/v
;

(t) ([X
;

(t)//Q, 3+q. <t)dWv.(t)

..... (A-4)

By the same rationale which we had in (A-1) as Q e
—»co ;

dg, (tJ/dt^.jtJq.^tj-Cu. (t) + v. (t)}g. (t)

(A-5)

and

dXj <t)=U._
(
(t)X;.

(

(t)dt-Ol; (t)+V. (t)}Z; (t)dt

+/u
;

.,(t)g
;
. (

(t)dW
lJ;|

(t)

-/u
;

(t)g. (t)dWu.(t)

-A,- (t)g
;
(t)dw v.(t)

i=2, 3, . .

.

(A-6)
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Since noise terras in a grade are independent of each

other, and the standard Wiener process dw (t) is N(0,dt) and

its scale factor is the standard deviation of a Poisson

process, we can express (A-3) and (A-6) in a simple form,

i.e.

/ajdfi^t) v^dW
b
(t) =/d^ + d,fdW (t)

therefore

dX, (t)=-b, (t)X, (t)dtVa(t)+b, (t)g, (t)dW, (t)

dX
;

(t)=u._
i

(t)X
:. l
(t)dt-b. (t)X. (t)dt

Vu. H(t)gM(t)+b. (t)g. (t)dW. (t)

1 —
.*- / ,3 / • • *

where

b; (t)-Vj (t)+u. (t)

(A-7)

The subscript for the Wiener process represents its

grade
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Appendix B

(Derivation of Moment Function )

To solve the variance and covariance of the noise

component, ve derive a system of simultaneous ordinary

differential equation for moments from the stochastic

differential equations (1,6).

X; (t+dt)=X
;
(t)+dX; (t)

(B-1)

Substitite (B-1) into (1,6) and square both sid<3s and take

the expectation.

1, (t)=E[X,2(t) ]

m
t
(t)=E[X2(t) ]

m
l
,(t)=E[X, (t)X, (t) ]

and

{E[X,2(t + dt) ]-E[X,2(t) ]}/dt=dm, (t)/dt

as dt approaches to zero.
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For the 1-st grade ;

and

X, (t+dt)=X, (t)-b, (t)X, (t)dt + /a(t)+b, <t)q,(t) dW, (t)

(B-2)

X* (t+dt) =X,2 (t) +b,2 (t) X2 (t) (dt) 2

*{a(t) +b, (t)g, (t)}dt-2b, (t) X* (t) dt

2/a(t)+b, (t)g,(t)X, (t) dW
,
(t)

-2b, <t)/a(t)+b, (t)q,(t)X, (t)dw, (t)

and

{E[X2(t + dt) ]-E[X2(t) ]}/dt :

b2(t)E[X2(t) ]dt

+ {a(t)+b, (t)q
(

(t)}-2b, (t)E[X,2(t) ]

+ 2/a(t)+b, <t)q, (t)E[X, (t)dW, (t) ]/dt

-2b, (t)/a(t)*b, (t)q,(t)E[X, (t)dW, (t) ]/dt

Since X, (t) and dW, (t) are independent, its covariance

is zero, and "dt" term is zero as "dt"—»0

dm
,
(t) /dt=a (t) + b

,
(t) q ,

(t) -2b
,
ft) m

,
(t)

(B-3)

~ (As (t) •+ (^i-^) £,(*)- 2. (v,+ u^-ny,^)
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By the same rationale we derive covariance function,

m^(t).

From (1,6) substituted by (B-1)

X, (t*dt)=X, (t)-b,(t)X, (t)dt+/a(t)+b, (t)q, (t)dW, (t)

(B-4)

X
z
(t+dt) =X t (t) +u

,
(t) X

,
(t) dt-b

fc
(t) X, (t) dt

A ,
(t) g

j
(t) *b ; (t) g ^ (t) da

,.
(t

)

(B-5)

Take the product (B-4) and (B-5) and get dm ll(t)/dt by

the same rationale which we had in (B-3)

Since

X, tt) and d», (t)

X
,
(t) and dH, (t)

I x
(t) and da, (t)

X r (t) and d» x (t)

da, (t) and da t (t)

are independent

and E[ X
,
(t) da, (t) ]=0, etc.

dm,
x
(t) /dt=u

,
(t) a

,
(t) - {b

,
(t) *b x (t) } B|

x
(t)

(B-6)
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Appendix C (derivation )

From (3,2) substituted by (3,3)

^ r V> u) * /g, j;
it) xi»)//5. ; ya

>! *

It)
J

Sivice the term

(C-1)

Jf|Ct)iY.W:)>/Q
o {} i

vt) 1 iU)|

a.

j
y,it) + yu>1

(C-2)
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Substitute (C-2) into (C-1) and take Q—*«o a then. by the

same logic ;

Jh.lt)

at lilt) -vh.it) 4 )
d

I ' •
J

inhere ^it)-v^U) i fe,

The ether equations were derived by the same logic.
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X-SGRLE--2.00E+00 UNITS INCH

y-SCRLE^2.00E-04 UNITS INCH
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